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1. Introduction

It has recently been noted that dynamical supersymmetry breaking in a long-lived

metastable vacuum is an interesting alternative to the usual dynamical supersymmetry

breaking scenario [1].1 It was shown that a microscopic asymptotically free theory can, for

certain choices of parameters, be described by a Seiberg dual theory in the infra-red which

has a metastable minimum at the origin. Moreover, the global supersymmetric minima are

also located where the macroscopic theory is well under control, and it could be shown that

the tunnelling rate to the true global minima could be made parametrically small. This

class of theories has recently attracted a lot of interest [3 – 14]. It opens up new avenues for

SUSY phenomenology, but one open question is that of naturalness; can one explain the

fact that the Universe today resides in a metastable minimum? Are these models more, or

less, natural than the usual scenario of dynamical supersymmetry breaking?

In this paper we point out that ending up in such a metastable minimum is in fact

very natural and even generic in the context of a thermal Universe. The theory at the

metastable minimum has (quite generally) more massless and nearly massless degrees of

freedom than at the supersymmetric minimum, an unusual consequence of the fact that

1In a simple modified O’Raifeartaigh model the possibility of SUSY breaking in a metastable vacuum

has been considered already a while ago in [2]. It is interesting to note that one of the motivations for this

work was that the Universe may get stuck in such a metastable state.
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the SUSY preserving vacua appear non-perturbatively2 in the Intriligator-Seiberg-Shih

(ISS) model. We will show that due to these relatively light states, at high temperatures

(greater than the supersymmetry breaking scale), the metastable minimum at the origin

becomes the global minimum. Moreover, we will see that even if the fields begin in the

supersymmetric minimum, high enough temperatures will thermally drive them to the

SUSY breaking minimum where they remain trapped as the Universe cools. More precisely,

we consider a scenario where, at the end of inflation, the Universe is very cold and we may

assume that it is in the energetically preferred supersymmetric vacuum.3 Then the Universe

reheats. If the temperature is high enough it will then automatically evolve towards the

SUSY breaking state as we will show in the following. Thus these models offer an alternative

and appealing explanation for why supersymmetry is broken: the early Universe was driven

to a supersymmetry breaking, metastable minimum by thermal effects.

In general we think of the settings where the ISS model forms a sector of the full theory

which includes a supersymmetric Standard Model (MSSM). Supersymmetry of the full

theory is broken if the ISS sector ends up in the metastable non-supersymmetric vacuum.

For the full theory to be driven to this SUSY breaking vacuum by thermal effects we, of

course, have to assume that the relevant fields of the supersymmetry breaking sector (ISS),

of the MSSM sector, and of the messenger sector were at some time in thermal equilibrium.

This is the case if the SUSY breaking scenario is gauge mediation, direct mediation, or

even a visible sector breaking. (On the other hand, a SUSY breaking sector which couples

to the MSSM only gravitationally would remain out of thermal equilibrium.)

The fact that the Universe can be driven to a metastable minimum by thermal effects

is well known in the context of charge and colour breaking minima in the MSSM [18, 19].

However these models differ from our case in two respects. First, it is in the global minimum

away from the origin that a symmetry, namely supersymmetry, is being restored in our

scenario. In addition the effective potential is extremely flat because the SUSY preserving

true vacua are generated dynamically. It is therefore automatically very sensitive to finite

temperature effects, whilst having a metastable vacuum that is extremely long lived.

In this paper it will be sufficient to consider the ISS metastable SUSY breaking sector

on its own. The thermal transition to the non-supersymmetric vacuum will be driven by

the above mismatch between the numbers of light degrees of freedom in the two vacua of

the ISS model.

2. The ISS model at zero temperature

2.1 Set-up of the model

The Intriligator-Seiberg-Shih model [1] is described by a supersymmetric SU(N) gauge

theory coupled to Nf flavours of chiral superfields ϕc
i and ϕ̃i

c transforming in the funda-

mental and the anti-fundamental representations of the gauge group; c = 1, . . . , N and

2In other words, supersymmetry is restored dynamically.
3If the Universe is already in the supersymmetry breaking state (e.g. a large Hubble constant acts similar

to temperature and may have already driven the Universe to the SUSY breaking vacuum), it will stay there

(cf. also [1, 15 – 17]).
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i = 1, . . . , Nf . There is also an Nf × Nf chiral superfield Φi
j which is a gauge singlet. The

number of flavours is taken to be large, Nf > 3N, such that the β-function for the gauge

coupling is positive,

b0 = 3N − Nf < 0 (2.1)

the theory is free in the IR and strongly coupled in the UV where it develops a Landau

pole at the energy-scale ΛL. The Wilsonian gauge coupling is

e−8π2/g2(E) =

(

E

ΛL

)Nf−3N

(2.2)

The condition (2.1) ensures that the theory is weakly coupled at scales E ¿ ΛL, thus its

low-energy dynamics as well as the vacuum structure is under control. In particular, this

guarantees a robust understanding of the theory in the metastable SUSY breaking vacuum

found in [1]. This is one of the key features of the ISS model(s).

One notes that this formulation of the theory can only provide a low-energy effective

field theory description due to the lack of the asymptotic freedom in (2.1),(2.2). At energy

scales of order ΛL and above, this effective description breaks down and one should use

instead a different (microscopic) description of the theory, assuming it exists. Fortunately

— and this is the second key feature of the ISS construction [1] — the ultraviolet completion

of this effective theory is known and is provided by its Seiberg dual formulation [20 – 22].

The microscopic description of the ISS model is N = 1 supersymmetric QCD with the gauge

group SU(Nc) and Nf flavours of fundamental and anti-fundamental quarks Qi and Q̃i. The

number of colours in the microscopic theory is Nc = Nf −N and the number of flavours Nf

is the same in both descriptions. It is required to be in the range Nc +1 ≤ Nf < 3
2Nc. The

lower limit on Nf ensures that eq. (2.1) holds, while the bmicro
0 coefficient of the microscopic

theory is positive (the β-function is negative and the microscopic theory is asymptotically

free)

bmicro
0 = 3Nc − Nf ,

3

2
Nc < bmicro

0 ≤ 2Nc − 1 (2.3)

This microscopic formulation of the ISS model will be referred to as the SU(Nc), Nf

microscopic Seiberg dual. It is weakly coupled in the UV and strongly coupled in the

IR. However, we already mentioned that the vacuum structure of the theory and the

supersymmetry breaking by a metastable vacuum should be considered in the low-energy

effective description of the theory, which is IR free. This description of the ISS model

is known as the SU(N), Nf macroscopic Seiberg dual formulation. From now on we will

always assume this macroscopic dual description of the ISS model. For the purposes of this

paper, the microscopic dual description is only necessary to guarantee the existence of the

theory above the Landau pole ΛL.

The tree-level superpotential of the ISS model is given by

Wcl = hTrNf
ϕΦϕ̃ − hµ2 TrNf

Φ (2.4)

where h and µ are constants. The usual holomorphicity arguments imply that the super-

potential (2.4) receives no corrections in perturbation theory. However, there is a non-

perturbative contribution to the full superpotential of the theory, W = Wcl + Wdyn, which
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is generated dynamically. Wdyn was determined in [1] and is given by

Wdyn = N

(

hNf
detNf

Φ

Λ
Nf−3N
L

)
1
N

(2.5)

This dynamical superpotential is exact, its form is uniquely determined by the symmetries

of the theory and it is generated by instanton-like configurations.

The authors of [1] have studied the vacuum structure of the theory and established

the existence of the metastable vacuum |vac〉+ characterised by

〈ϕ〉 = 〈ϕ̃T 〉 = µ

(

1lN
0Nf−N

)

, 〈Φ〉 = 0 , V+ = (Nf − N)|h2µ4| (2.6)

where V+ is the classical energy density in this vacuum. Supersymmetry is broken since

V+ > 0. In this vacuum the SU(N) gauge group is Higgsed by the vevs of ϕ and ϕ̃ and the

gauge degrees of freedom are massive with mgauge = gµ.

This supersymmetry breaking vacuum |vac〉+ originates from the so-called rank con-

dition, which implies that there are no solutions to the F-flatness equation F
Φj

i
= 0 for the

classical superpotential Wcl in (2.4),

F
Φj

i
= h(ϕ̃j

cϕ
c
i − µ2δJ

i ) 6= 0 (2.7)

The non-perturbative superpotential of (2.5) gives negligible contributions to the effective

potential around this vacuum and can be ignored there. It was further argued in [1] that the

vacuum (2.6) has no tachyonic directions, is classically stable, and quantum-mechanically

is long-lived.

In addition to the metastable SUSY breaking vacuum |vac〉+, the authors of [1] have

also identified the SUSY preserving stable vacuum4 |vac〉0,

〈ϕ〉 = 〈ϕ̃T 〉 = 0 , 〈Φ〉 = Φ0 = µγ0 1lNf
, V0 = 0 (2.8)

where V0 is the energy density in this vacuum and

γ0 =

(

hε
Nf−3N

Nf−N

)−1

, and ε :=
µ

ΛL
¿ 1 (2.9)

This vacuum was determined in [1] by solving the F-flatness conditions for the complete

superpotential W = Wcl+Wdyn of the theory. In the vicinity of |vac〉0 the non-perturbative

superpotential of (2.5) is essential as it alleviates the rank condition (2.7) and allows to

solve F
Φj

i
= 0 equations. Thus, the appearance of the SUSY preserving vacuum (2.8)

can be interpreted in our macroscopic dual description as a non-perturbative or dynamical

restoration of supersymmetry [1].

When in the next section we put the ISS theory at high temperature it will be important

to know the number of light and heavy degrees of freedom of the theory as we interpolate

4In fact there are precisely Nf − N = Nc of such vacua differing by the phase e2πi/(Nf−N) as required

by the Witten index of the microscopic Seiberg dual formulation.
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between |vac〉+ and |vac〉0. The macroscopic description of the ISS model is meaningful as

long as we work at energy scales much smaller than the cut-off scale ΛL. The requirement

that ε = µ/ΛL ¿ 1 is a condition that the gauge theory is weakly coupled at the scale µ

which is the natural scale of the macroscopic theory. Equation (2.9) implies that γ0 À 1 or

in other words that there is a natural separation of scales µ ¿ Φ0 = µγ0 ¿ ΛL dictated by

ε ¿ 1. The masses of order hΦ0 will be treated as heavy and all other masses suppressed

with respect to hΦ0 by a positive power of ε we will refer to as light. In the SUSY preserving

vacuum |vac〉0 the heavy degrees of freedom are the Nf flavours of ϕ and ϕ̃, they get the

tree-level masses mϕ = hΦ0 via (2.4). All other degrees of freedom in |vac〉0 are light.5

In the vacuum |vac〉+ all of the original degrees of freedom of the ISS theory are light.

Hence we note for future reference that the SUSY preserving vacuum |vac〉0 has fewer light

degrees of freedom than the SUSY breaking vacuum |vac〉+. The mismatch is given by the

Nf flavours of ϕ and ϕ̃. The fact that the metastable SUSY breaking vacuum has fewer

degrees of freedom than the supersymmetric vacuum is an important feature of the ISS

model. As we will explain below, this property will give us a necessary condition for the

thermal Universe to end up in the metastable vacuum in the first place.

2.2 Effective potential

Having presented the general set-up, let us now turn to the effective potential between the

two vacua |vac〉+ and |vac〉0 of the ISS model. This can be determined in its entirety as

follows. We parameterise the path interpolating between the two vacua (2.6) and (2.8) in

field space via

ϕ(σ) = ϕ̃T (σ) = σµ

(

1lN
0Nf−N

)

, Φ(γ) = γµ1lNf
, 0 ≤ γ ≤ γ0 , 1 ≥ σ ≥ 0 (2.10)

Since the Kähler potential in the free magnetic phase in the IR is that of the classical

theory, the effective potential V can be determined from knowing the superpotential of the

theory (2.4), (2.5). First we will calculate the classical potential Vcl along path (2.10) and

ignoring the non-perturbative contribution Wdyn. Using (2.4) we find,

1

|h|2 Vcl(γ, σ) = TrNf
|Φϕ|2 + TrNf

|ϕ̃Φ|2 + TrNf
|ϕ̃iϕj − µ2δij |2

= |µ|4(2Nγ2σ2 + N(σ2 − 1)2 + Nf − N) (2.11)

This expression for Vcl(γ, σ) is extremized for σ =
√

1 − γ2 or σ = 0. We substitute the

first solution for σ into Vcl for the range of 0 ≤ γ ≤ 1, and the second solution, σ = 0 for

1 ≤ γ ≤ γ0. We thus obtain

1

|h2µ4| Vcl(γ) =

{

Nf − N + 2Nγ2(1 − 1
2γ2) 0 ≤ γ ≤ 1

Nf 1 ≤ γ ≤ γ0
(2.12)

5Gauge degrees of freedom in |vac〉0 are confined, but the appropriate mass gap, given by the gaugino

condensate, is parametrically (in ε) smaller than mϕ = hΦ0. Thus the gauge degrees of freedom can still

be counted as light for sufficiently high temperatures.
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Figure 1: Zero temperature effective potential V̂T=0(γ) of eq. (2.14) as a function of γ = Φ/µ.

For the SUSY preserving vacuum |vac〉0 we chose γ = γ0 = 7.5. The SUSY breaking metastable

minimum |vac〉+ is always at γ = 0, and the top of the barrier is always at γ = 1. We have taken

the minimal allowed values for N and Nf , N = 2, Nf = 7.

This potential is accurate for γ ≤ 1, where the potential is rising. In order to address the

flat regime 1 ≤ γ ≤ γ0 we need to include the contribution of the non-perturbative Wdyn.

This gives

V = TrNf

∣

∣

∣

∣

∣

∣

∂

∂Φij
N

(

hNf
detNf

Φ

Λ
Nf−3N
L

)
1
N

− hµ2δij

∣

∣

∣

∣

∣

∣

2

= |h2µ4|Nf

((

γ

γ0

)

Nf−N

N

− 1

)2

(2.13)

Combining these expressions we have the final result for the effective potential interpolating

between the two vacua:

V̂T=0(γ) ≡ 1

|h2µ4| V (γ)T=0 =























Nf − N + 2Nγ2
(

1 − 1
2γ2

)

0 ≤ γ ≤ 1

Nf

((

γ
γ0

)

Nf−N

N

− 1

)2

1 ≤ γ

(2.14)

For our forthcoming thermal applications we have included the subscript T = 0 to indicate

that this effective potential is calculated at zero temperature. We plot the zero-temperature

effective potential (2.14) in figure 1. The key features of this effective potential are (1) the

large distance between the two vacua, γ0 À 1, and (2) the slow rise of the potential to the

left of the SUSY preserving vacuum. (For esthetic reasons γ0 in figure 1. is actually chosen

to be rather small, γ = γ0 = 7.5.)

We note that the matching between the two regimes at γ = 1 in (2.14) holds up to an

insignificant 1/γ
Nf −N

N
0 correction which is small since γ0 À 1. This tiny mismatch (which

can be seen in figure 1.) can be easily corrected in the derivation of V by using the full

superpotential in both regimes, rather than neglecting Wdyn at γ ≤ 1. However, it will not

change anything in our considerations. Other corrections which we have dropped from the

final expression include perturbative corrections to the Kahler potential. These effects are

also expected to be small at scales much below the cut-off ΛL.

– 6 –



J
H
E
P
0
1
(
2
0
0
7
)
0
8
9

The authors of [1] have already estimated the tunnelling rate from the metastable

|vac〉+ to the supersymmetric vacuum |vac〉0 by approximating the potential in figure 1 in

terms of a triangle. The action of the bounce solution in the triangular potential is of the

form,

S4D
bounce =

2π2

3h2

N3

Nf
2

(

Φ0

µ

)4

∼ h2

ε4(Nf−3N)/(Nf−N)
À 1 for ε ¿ 1 (2.15)

Thus as argued in [1] it is always possible, by choosing sufficiently small ε, to ensure that

the decay time of the metastable vacuum to the SUSY ground state is much longer than

the age of the Universe.

On closer inspection the constraints imposed by this condition are in any case very

weak. In order to estimate the required value of ε, note that the Euclidean action S4D
bounce

gives the false vacuum decay rate per unit volume as

Γ4/V = D4e
−S4D

bounce . (2.16)

D4 is the determinant coefficient and is irrelevant to the discussion. To determine whether

the Universe could have decayed (at least once) in its lifetime, we multiply the above by

the space-time volume of the past light-cone of the observable Universe. This results in a

bound to have no decay of roughly [19, 23]

S4D
bounce

>∼ 400. (2.17)

This translates into an extremely weak lower bound on Φ0,

(

Φ0

µ

)

>∼ 3
√

h

(

Nf
2

N3

)

1
4

. (2.18)

Note that the bound is on the relative width to height of the bump. Thus it is indeed

simply the flatness of the potential which protects the metastable vacuum against decay.

In terms of ε = µ/ΛL the bound (2.18) reads

ε
1− 2N

Nf−N .
1

3h
√

h

(

N3

Nf
2

)

1
4

. (2.19)

It is interesting to note that this very weak bound (2.18), (2.19) becomes strong when

expressed in terms of ε itself in the minimal case of N = 2 and Nf = 7,

ε .

(

1

3h
√

h

(

8

49

)
1
4

)5

' 4.3 · 10−4

(

1

h

)
15
2

¿ 1. (2.20)

In the following section we will explain why at high temperatures the Universe has ended

up in the metastable non-supersymmetric vacuum in the first place.
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3. Dynamical evolution at finite temperature

3.1 The shape of the effective potential at finite temperature

The effective potential at finite temperature along the Φ direction is governed by the

following well-known expression [24]:

VT (Φ) = VT=0(Φ) +
T 4

2π2

∑

i

±ni

∫ ∞

0
dq q2 ln

(

1 ∓ exp

(

−
√

q2 + m2
i (Φ)/T 2

))

(3.1)

The first term on the right hand side is the zero temperature value of the effective potential;

for the ISS model we have determined it in eq. (2.14) and in figure 1. The second term is

the purely thermal correction (which vanishes at T = 0) and it is determined at one-loop

in perturbation theory. The ni denote the numbers of degrees of freedom present in the

theory6 and the summation is over all of these degrees of freedom. The upper sign is for

bosons and the lower one for fermions. Finally, mi(Φ) denote the masses of these degrees

of freedom induced by the vevs of the field Φ.

We have noted in the previous section that as we interpolate from the metastable

vacuum to the supersymmetric one, the Nf flavours of ϕ and ϕ̃ acquire masses mϕ = hΦ =

hµγ and become heavy at large values of Φ. To a good approximation all other degrees

of freedom can be counted as essentially massless. As we are not interested in the overall

additive (T dependent, but field independent) constant in the thermal potential, we need

to include in (3.1) only those variables whose masses vary from being light in one vacuum

to being heavy in the other. These are precisely the ϕ’s and ϕ̃’s. This implies7

V̂Θ(γ) = V̂Θ=0(γ) +
h2

2π2
Θ4

∑

±

±4NNf

∫ ∞

0
dq q2 ln

(

1 ∓ exp(−
√

q2 + γ2/Θ2)
)

. (3.2)

The above expression is written in terms of a dimensionless variable γ = Φ/µ and we have

also defined a rescaled temperature

Θ = T/|hµ| (3.3)

In figure 2 we plot the thermal potential (3.2) for a few characteristic values of temperature.

In general one can consider a very wide range of temperatures 0 ≤ T ¿ ΛL corre-

sponding to 0 ≤ Θ ¿ 1/(hε). From figure 2 where we have plotted the effective potential

at various temperatures we immediately make out several interesting temperatures. At

high enough temperature there is only one minimum at the origin and one would expect

to be able to roll down classically to the non-supersymmetric minimum |vac〉+, as will be

discussed in section 3.2.3. Below Θ = Θcrit a second minimum forms. It will turn out,

that for our ISS potential this critical temperature will actually be less than γ0. In the

6Weyl fermions and complex scalars each count as n = 2.
7There are only two terms in the sum in (3.2): one for bosons (+), and one for fermions (-). The

prefactor 4NNf counts the total number of bosonic degrees of freedom in ϕa
i and ϕ̃i

a.
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Figure 2: Thermal effective potential (3.2) for different values of the temperature. Going from

bottom to top, the red line corresponds to the temperature Θ & Θcrit where we have only one

vacuum at γ = 0. The orange line corresponds to Θ ≈ Θcrit where the second vacuum appears and

the classical rolling stops. The green line is in the interval Θdegen < Θ < Θcrit where one could hope

to tunnel under the barrier. The blue line is at Θ ∼ Θdegen where the two vacua become degenerate.

Finally, the black line gives the zero temperature potential where the non-supersymmetric vacuum

at the origin becomes metastable.

following analysis, we will consider the range of temperatures hµ < T ≤ hΦ0 corresponding

to 1 < Θ ≤ γ0.

At temperatures below Θcrit the SUSY breaking minimum at the origin still has lower

free energy then |vac〉0. We will calculate the bubble nucleation rate to the true vacuum

|vac〉+ in section 3.2.2. Another distinguished temperature Θdegen is when the SUSY pre-

serving vacuum |vac〉0 becomes degenerate with the non-supersymmetric vacuum |vac〉+.

For a generic potential one would expect that somewhere between these two scales there

is a temperature Θ∗ (Θdegen < Θ∗ ≤ Θcrit) where the rate of bubble nucleation turns

from large to small. Our main goal is to determine the temperature where the transitions

(classical or tunnelling ones) from |vac〉0 to |vac〉+ stop.

3.2 Transition to a SUSY breaking vacuum and the lower bound on TR

In this subsection we discuss the two possibilities for the field to evolve to the SUSY

breaking vacuum |vac〉+, classical evolution and bubble nucleation.

3.2.1 Classical evolution to the SUSY breaking vacuum: Estimate of Tcrit

It is clear from our expression for the thermal potential that at sufficiently high temper-

atures there is only one minimum, namely |vac〉+, and the SUSY preserving minimum

disappears. This is caused by Nf flavours of ϕ and ϕ̃ becoming heavy away from the ori-

gin. The disappearance of |vac〉0 is most easily seen analytically in the limit of very high

temperatures γ ¿ Θ where the thermal potential grows as Θ2γ2 in the γ i.e. Φ direction,

V̂Θ − V̂Θ=0(γ) ∼ NNf Θ2γ2 − const Θ4 , Θ À γ = Φ/µ (3.4)

Thus there is a critical temperature Θcrit such that at Θ > Θcrit there is only one minimum,

and at Θ < Θcrit the supersymmetry preserving second minimum starts to materialise.
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A better estimate can be obtained by using the approximation,

±
∫ ∞

0
dq q2 ln

(

1 ∓ exp(−
√

q2 + γ2/Θ2)
)

∼ Θ4
( γ

2πΘ

)
3
2
exp

(

− γ

Θ

)

, for γ À Θ (3.5)

for the integral in the Θ dependent part of eq. (3.2). Comparing the derivatives (first and

second) of the Θ-dependent part and the Θ-independent part of the effective potential V̂Θ

in the vicinity of γ0 we get an estimate,

Θcrit ≈
γ0

log
(

γ4
0/C

) , C =

√
2π

3
2

Nh2

(

1 − Nf

N

)2

(3.6)

which we have also confirmed numerically.

Although the height of the barrier in the zero temperature potential is only of the

order of µ where µ ¿ γ0µ = hΦ0 the temperature necessary to erode the second minimum

is only slightly (logarithmically) smaller than hΦ0 due to the exponential suppression ∼
exp(−γ/Θ) apparent in eqs. (3.2) and (3.5).

In the early Universe the situation is not static and the temperature decreases due to

the expansion of the Universe. So one should check that even in the absence of a second

minimum the field has time enough to evolve to |vac〉+ before the temperature drops below

Θcrit. We will comment on this issue more in the next subsection. Here, we just point out

that the temperature drops on a time scale MP l/T
2 À 1/T .

3.2.2 Bubble nucleation: estimate of T∗

Let us now turn to the possibility of bubble nucleation, with an estimate of the temperature

T∗ where the transitions from |vac〉0 to |vac〉+ change from fast to slow. Bubble nucleation

is of course only possible above the temperature where the two minima become degenerate,

so let us first estimate this. We compare the effective potential (3.2) at the origin

V̂Θ(γ = 0) = (N − Nf ) − π2h2Θ4

90

(

nB +
7

8
nF

)

(3.7)

to the value of the effective potential at the second vacuum. The latter remains approx-

imately zero since the temperature Tdegen is much below Φ0. In (3.7) nB(nF ) counts the

number of bosonic(fermionic) degrees of freedom (4NNF in both cases). We thus find

Θdegen =

(

12(Nf − N)

h2π2NNf

)
1
4

, for γ0 À 1. (3.8)

Now we would like to know when bubble nucleation is fast enough to lead to a phase

transition. Thus we consider temperatures in the range Θdegen < Θ < Θcrit such that the

second vacuum |vac〉0 is already formed but still higher than |vac〉+. In the following we

want to estimate Θ∗ where tunnelling becomes too slow.

For this purpose we will now derive a simple estimate on the action of the tunnelling

trajectory in the thermal effective potential of the our model where the temperature is in

the range Θdegen < Θ ≤ Θcrit. The potential we want to model is depicted in figure 2, its

– 10 –
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Figure 3: A simple no-barrier model for the thermal effective potential. The modelling potential

V̂lin(γ) is shown in red and the exact thermal potential V̂T (γ)is black. The tunnelling rate to the

true vacuum for this model is calculated in the text.

characteristic features are that the ‘false’ vacuum |vac〉0 is far away in the field space from

|vac〉+ and that the potential climbs very slowly from |vac〉0 to a shallow barrier and then

descends steeply to the ‘true’ vacuum |vac〉+. These features are a reflection of the fact that

at zero temperature the vacuum |vac〉0 was generated non-perturbatively (as reviewed in

the previous section). We will model this class of potentials with a simple linear no-barrier

potential,8

V̂lin(γ) = θ(η − γ)NfK (γ − η) (3.9)

where K and η are constants, Nf is put for convenience, and θ is the step-function. We plot

this potential in figure 2 for a convenient choice of constants along with the exact thermal

potential. It is clear from this figure that the tunnelling rate for our model potential will

always be a little higher than in the real case.

The potential (3.9) admits a simple analytic solution for the bounce configuration.

The tunnelling in this potential was discussed in detail in ref. [26] in the T = 0 case. We

have performed a similar calculation in the 3-dimensional settings relevant to the thermal

case. The tunnelling configuration is the bounce solution γbounce(x) which extremizes the

3-dimensional action

1

T
S3D =

1

T
4π

∫

dr r2
(

1
2TrNf

(Φ′)2 + VT (Φ)
)

= Nf
4π

Θh2

∫

dxx2

(

1
2(γ′)2 +

1

Nf
V̂lin(γ)

)

(3.10)

with the appropriate initial conditions. The right hand side of (3.10) is written in terms

of our usual dimensionless variables γ, Θ and the rescaled radial distance x = hµr. The

classical equation for the bounce is then

γ′′ +
2

x
γ′ =

1

Nf
∂γ V̂ (γ) (3.11)

8We have checked the dependence on the characteristic scales of the potential using other simple ap-

proximations, for example two matched quadratics and a triangular potential.

– 11 –



J
H
E
P
0
1
(
2
0
0
7
)
0
8
9

For the case (3.9) the bounce solution reads

γbounce(x) =

{

1
6Kx2 x ≤ xm

3η − 2η xm
x x ≥ xm

(3.12)

where xm =
√

6η
K is the matching point for the two branches of the bounce solution and of

its derivative. The field configuration (3.12) describes a bubble of size xm with γ = 3η on

the outside at large x À xm, and γ = 0 on the inside at x = 0. The asymptotic value of

γbounce is the ‘false’ vacuum |vac〉0, thus we should identify 3η with γ0.

The action (3.10) on the bounce trajectory is

1

T
S3D

bounce =
4π

Θh2
Nf

8
√

6

5

η2+ 1
2

K
1
2

(3.13)

Now using the identification 3η = γ0 and NfKη ∝ ∆V̂ , where ∆V̂ is the drop in the

potential which should be taken to be ∆V̂ ∝ Θ4 we get

1

T
S3D

bounce ≈ const

(

Φ0

T

)3

(3.14)

using the original dimensional variables Φ0 and T . In order for the Universe to have

undergone a phase transition by bubble nucleation one requires a sufficiently high nucleation

probability of bubbles of metastable vacuum. The nucleation rate is given by

Γ3 ∼ T 4e−S3D/T . (3.15)

This rate must be integrated from a maximum (reheat) temperature TR to the temperature

Tdegen ∼ µ at which the metastable and supersymmetric minima are degenerate. The

fraction of space remaining in the broken phase is e−P where [19]

P ∼ M4
P l

T 3
0

∫ TR

Tdegen

T−2(1 − T0/T )3e−S3D/T dT (3.16)

≈ M4
P l

3T 3
0 S3D

e
−S3D

TR (3.17)

where T0 is the temperature of the Universe today. This gives

P ∼ e
256−S3D

TR
MW

S3D
(3.18)

and the bound becomes Φ0
TR

. 1.3. From this we conclude that the temperature T∗ at which

the tunnelling transitions are still possible is very high (at the very top of its defining range),

T∗ & Φ0 , or Θ∗ & γ0 (3.19)

The temperature where bubble nucleation becomes significant has the same parametric

dependence as the critical temperature Θcrit (our simple estimate is insufficient to capture

logarithmic dependencies) and we conclude that T∗ ∼ Tcrit.
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3.2.3 Behaviour of the field after nucleation/rolling

If the temperature rises above the critical temperature, the field is in principle free to roll;

however, is the critical temperature a sufficient condition for the field to always end up at

the origin? Assuming that the Universe evolves in the standard FRW manner, we should

check that the phase transition has time to complete, and that the falling temperature

does not “overtake” the field. In order to model the field after the transition, we can

approximate the potential at temperatures above Tcrit as linear;9

V = const T 4 Φ

Φ0
− const′ (3.20)

Neglecting for the moment the effect of the ϕΦϕ̃ coupling, the field equations are

Φ̈ + 3HΦ̇ = −const
T 4

Φ0
. (3.21)

We may assume that the Hubble constant H ∼ T 2/MP l is negligible in this equation, so,

taking initial values T0 & Tcrit i.e. T0 ∼ Φ0, we find that the field falls to the origin in time

∆troll ∼
Φ0

T 2
0

∼ 1

T0
∼ M

− 1
2

P l t
1
2
0 (3.22)

where on the right hand side t0 defines the time at which the temperature is T0, and

we have considered a radiation dominated Universe with scale factor a(t) ∼ (t/t0)
1
2 . The

result (3.22) should be compared to the typical time necessary for the Universe to cool to

temperatures where the second minimum |vac〉0 becomes prominent. The evolution of T

is given by

T (t) =
T0

a(t)
∼ T0

(

t0
t

)

1
2

(3.23)

For example the time needed to reach T = T0/
√

2 is ∆tcool = t0 which gives ∆tcool À ∆troll.

This means that the field is able to roll essentially instantaneously to the origin where it

undergoes coherent oscillation.

Having concluded that the fields roll down to |vac〉+ sufficiently fast, we still need to

check that the oscillations of the fields around |vac〉+ would not bring us back to |vac〉0 as

the Universe cools. It is easy to see that if there was only the Hubble damping the Φ field

would oscillate out of the origin as the Universe cools. Indeed, the Φ oscillations essentially

preserve energy in a comoving volume;

m2
ΦΦ2

maxR
3 = const , (3.24)

9Here, we want just a rough estimate of the time scale of the evolution towards the supersymmetry

breaking minimum. For this we use a simple adiabatic approximation (i.e. we use classical evolution

equations but with an effective thermal potential) and a simplified potential. One can argue that, in

general, some kind of non-adiabatic treatment is required. Nevertheless, we expect that our conclusions

from this simple estimate remain qualitatively correct.
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where R ∼ t
1
2 is the scale factor in a radiation dominated Universe, and mΦ = hT

2 is the

temperature induced mass of Φ at the origin. In an adiabatic regime RT = const so we

find

Φmax(T )

Φ0
=

√

T

T0
. (3.25)

The field would then escape from the origin because when T ∼ µ, (assuming T0 ∼ Φ0) the

size of the oscillations would be

Φmax ∼
√

Φ0µ À µ. (3.26)

Fortunately, any open decay channel of Φ will typically provide a damping rate ΓΦ ∼ T ,

capturing the field in |vac〉+. An example are couplings to the messenger sector fields, f ,

of the form h′f̃Φf. Since we assume thermal equilibrium, such a coupling must exist and

cannot be arbitrarily weak. The decaying oscillation amplitudes are of order

Φmax(T )

Φ0
=

√

T

T0
e−

1
2
ΓΦ(t−t0). (3.27)

Sufficient damping always occurs; imposing Φmax < µ requires only that MPl
Φ0

>∼ log(Φ0/µ)

which is always satisfied and the Universe ends up in the SUSY breaking state |vac〉+. Note,

however, that the number of oscillations before damping is proportional to log(Φ0/µ) and

may be large.

3.2.4 Lower bound on reheating temperature TR

Now, let us summarize our analysis and explain under which conditions it is natural for

the early Universe to settle down at the metastable SUSY breaking vacuum. At the end of

inflation the Universe is in a state of very low temperature and one may assume that it is

in the energetically preferred supersymmetric state10 |vac〉0. After inflation the Universe

reheats to a temperature TR. Already at relatively low temperatures ∼ Tdegen ∼ µ the

supersymmetry breaking vacuum will have lower free energy than the supersymmetric

vacuum. However, if TR falls in the range Tdegen < TR . T∗ ∼ Tcrit, the Universe will

remain in the state |vac〉0 although |vac〉+ is energetically preferred. It is stuck there

because the barrier makes classical evolution impossible and bubble nucleation is too slow.

Above T∗ the bubble nucleation rate will be high and above Tcrit the classical evolution

becomes possible. Hence, the Universe will evolve to the preferred supersymmetry breaking

state |vac〉+. We conclude that if the reheating temperature TR fulfills

Tcrit ∼
µ

ε1−2N/(Nf−N)
. TR .

µ

ε
(3.28)

it is ensured that the Universe always ends up in the supersymmetry breaking ground

state11 |vac〉+.

10If it is already in the supersymmetry breaking vacuum, |vac〉+, it will stay there.
11In this estimate we ignore weak logarithmic corrections in ε.
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In principle one should also consider the possibility of a transition back towards the

SUSY vacuum for T < Tdegen. It is known that this does not happen at zero temperature [1]

. We have made a simple estimate of this effect at T > 0 and concluded that the Universe

remains trapped. More recently, this has been discussed in depth in [15 – 17].

The condition (2.18) or (2.19) that the metastable vacuum |vac〉+ is long-lived at zero

temperature does not necessarily require Φ0 to be very large or ε1−2N/(Nf−N) to be very

small. For a low supersymmetry breaking scale µ of order of a few TeV the lower bound

on the reheating temperature in (3.28) can be easily satisfied for reheating temperatures

as low as around 10 or 100 TeV. On the other hand, for models with a significantly higher

SUSY breaking scale, this bound becomes more constraining.

4. Conclusions and discussion

We have examined the consequences of meta-stable SUSY breaking vacua in a cosmological

setting. As noted in [1], the ISS theory naturally admits a finite number of isolated super-

symmetric vacua (as determined by the Witten index) along with a larger moduli space of

metastable SUSY breaking vacua. Since the latter is a much bigger configuration space,

ISS suggested that it is more favorable for the Universe to be populated in the metastable

SUSY breaking vacua. In this paper, we have considered thermal effects in the ISS model

and have shown that the early Universe is always driven to metastability: as long as the

SUSY breaking sector is in thermal equilibrium this provides a generic, dynamical expla-

nation why supersymmetry became broken. This phenomenon is a consequence of two

distinguishing properties of the ISS theory which are not necessarily shared by other mod-

els with metastable SUSY breaking vacua, namely, that the metastable minima have more

light degrees of freedom than the SUSY preserving vacua, and that the metastable vacua

are separated from the SUSY preserving vacuum by a very shallow dynamically induced

potential. Both play significant roles in our argument and our various estimates.

Given the current interest in ”landscapes” of one variety or another, it is difficult

to resist speculating on their implications for the ISS models, given the conclusions of

our study. One longstanding problem that can be addressed in this context is that of the

hierarchy between the Planck and supersymmetry breaking scales. Consider the possibility

that the SUSY breaking sector has in fact a large number of product groups, with a

landscape of metastable ISS minima into which the Universe could be thermally driven,

with a range of values of SUSY breaking. The very existence of the lower bound on TR

implies that there is a maximal value of a SUSY breaking scale µ which characterizes

metastable vacua we can reach as the Universe cools down. Using our estimate for TR,

eq. (3.28) we find

µ ∼ ΛL

(

TR

ΛL

)

Nf−N

2N

, (4.1)

where ΛL is the Landau pole of the theory. Thus not only is the SUSY breaking determined

to lie below ΛL, it is also parametrically suppressed by powers of TR/ΛL.
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